

R-matrix school 2025: SAMMY computer exercises for students

M. T. Pigni and D. Wiarda Nuclear Data Group, Nuclear Energy Fuel Cycle Division Oak Ridge National Laboratory, Oak Ridge, TN

R-matrix school 2025, Oak Ridge, TN, June 2–6, 2025

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Basic information to run SAMMY

- Set up path for SAMMY executable
- SAMMY code runs as "SAMMY < input" where input contains list of filenames as

```
What is the name of the INPut file?
inputname.inp
>>> inputname.inp <<<
What is the name of the PARameter file?
parname.par
>>> parname.par <<<
What is the DATa file name? EMIN? EMAX? dataname.twenty
>>> dataname.twenty <<<
Emin and Emax = 0.0 1000.0
```

File Extensions are not mandatory but recommended. Important output files are SAMMY. {LPT,LST}. inputname.inp and dataname.twenty files are linked by experimental corrections: it is a common convention to have same names inputname = dataname with different extensions.

Plotting measured and calculated data

- SAMMY.LST contains the measured and calculated data for plotting
- Python scripts are used to plot data for all the test cases
- SAMMY.LST is composed by the following (optional *) sections or columns

Section	Contents and units
1	Energy in eV, keV, or MeV as specified in the input
2	Measured data (type)
3	Measured data (type) uncertainty
4	Prior (or 0 th) theoretical data
5*	Post (or final after n iterations) theoretical data
6*	Measured transmission (dimensionless)
7*	Measured transmission uncertainty (dimensionless)
8*	Prior Theoretical transmission (dimensionless)
9*	Post Theoretical transmission (dimensionless)
10*	Theoretical data uncertainty

data (types) = {[total, fission, capture, elastic] cross section (barn), transmission, [fission, capture] yield}

EX001: Input files structure

- Nucleus Xy with mass number A = 10 and spin I = 0
- Reaction type: neutron induced capture $\equiv^{10} Xy(n, \gamma)$

Example # 001 10xy 10.000 8.0 12.0 do not solve bayes equations ev fgm twenty generate odf file automatically quantum numbers are in parameter file	PARTICLE PAIR DEFINITIONS Name=n+10xy Particle a=neutron Particle b=10xy Za= 0 Zb= 1 Pent=1 Shift=0 Sa= 0.5 Sb= 0.0 Ma= 1.00866492000000 Mb= 10.00000000000 SPIN GROUPS 1 1 0 0.5 0.5 1 1 0 0.5 0.5
300. 2.9080 capture nuclide masses and abundances follow 10.00000 0.9999999 0.000010 0 1	RESONANCES are listed next 10.0 1. 0.5 000001 .10000000 Channel radii in key-word format Radii= 2.908000, 2.908000 Flags=0, 0 Group= 1 Chan= 1,

• Separation between experimental conditions (.inp file on the left) and R-matrix parameters (.par file on the right)

EX000: Auxiliary code SAMQUA (two cases)

- Two input files ex000{a,b}.inp plus README.FIRST
 - ex000.e dependency of ex000a.inp: energy list to compute penetrability factors
- Output files: ex000*. {quantum*, quanpar, table}
- Two format options: "Particle-pair" with ex000a.inp and "Cadarache" with ex000b.inp
- Goal: generation of SAMMY quantum number information for
 - (a) outgoing reactions for incident partition $n+^{16}O$
 - (b) outgoing reactions for incident partition α +¹⁸O
 - Discussion on the results
- Exercise: to run multiple isotope test case ex000x.inp in "Particle-pair" format option

EX001: Simple one-resonance nonfissile nucleus

- One input file ex001a.inp
- Reaction type: capture $\equiv^{10} Xy(n, \gamma)$
- Run with (ex001x.inp) or without (ex001a.inp) Bayesian option
- Change ITMAX in ex001x.inp file to see convergence of the fit

🗶 OAK RIDGE

EX002: Simple one and several resonances fissile nucleus

- One input file ex002a.inp
- Reaction type: capture $\equiv^{10} Xy(n, \gamma)$
- Run with (ex002b.inp) or without (ex002a.inp) Bayesian option
- Impact of adding fission widths on capture reaction channel

EX002: Simple one and several resonances fissile nucleus

- Changing energy limits from 8-12 eV to 0-1200 eV
- Including several resonances (ex002c.par)
- log-log plots

EX003: Different kinds of cross sections

- Several input files ex003{a,b}.inp
- Reaction types: (a) capture $\equiv^{10} Xy(n, \gamma)$, (b) fission $\equiv^{10} Xy(n, f)$

EX003: Different kinds of cross sections

- Several input files ex003{c,d}.inp
- Reaction types: (c) elastic $\equiv^{10} Xy(n, el)$, (d) total $\equiv^{10} Xy(n, tot)$

EX004: $\ell \ge 0$ (s, p, d waves); I ≥ 0

- Input files ex004{a,b}.inp
- Reaction type: capture $\equiv^{10} Xy(n, \gamma)$
- Noticing different resonance shapes (target spin I = 0 and partial waves $\ell = 0, 1$)

CAK RIDGE

EX004: $\ell \ge 0$ (s, p, d waves); I ≥ 0

- Input files ex004{c,d}.inp
- Reaction type: capture
- Changing target spin to half-integer (I = 1/2) and adding partial waves $\ell = 0, 1, 2$

EX005: Doppler broadening

- Input files ex005{a,b}.inp
- Reaction type: capture
- Doppler Broadening switched on

EX006: Resolution broadening (Gaussian)

- Input files ex006{a,b,c}.inp
- Reaction type: Fission \equiv^{239} Pu(n, f)
- Gaussian resolution broadening: energy dependent channel width

CAK RIDGE National Laboratory

EX007: Resolution broadening (ORR)

- Input files ex007{tl,tn}.inp
- Reaction type: Transmission data on $n+^{58}Ni$

EX007: Resolution broadening (ORR)

- Input files ex007{wl,wn}.inp
- Reaction type: Transmission data on $n+^{58}Ni$

EX008: Resolution broadening (RPI)

- Input file ex008x.inp
- Reaction type: Transmission data on $n+^{183}W$
- Bayesian with small prior uncertainty on resonance energies

EX009: Normalizations

- Input file ex009x.inp
- Reaction type: Transmission data on n+58Ni
- Bayes with background function

EX010: Normalizations

- Input file ex0010x.inp
- Reaction type: Total= ${}^{56}Fe(n, tot)$ and ${}^{58}Ni(n, tot)$
- Bayes with background function

EX011: More than one channel radius

- Input file ex0011x.inp
- Reaction type: Total \equiv ⁵⁸Ni(*n*,tot)
- Parameter file with channel radii 6.2 fm (group=1,4,5,6) and 4.2 fm (group=2,3)

EX012: Multiple nuclides within a single sample

- Input file ex0012x.inp
- Reaction type: Transmission on ^{nat}Si(*n*,tot)

EX013: Uncertainties on parameters

- Input file ex0013{a,b}.inp
- Reaction type: Transmission on ${}^{58}Ni(n, tot)$
- Uncertainty on the resonance energies and explicit parameter uncertainties

EX014: Angular distributions

- Input file ex0014x.inp
- Reaction type: differential elastic \equiv d σ /d Ω (b/sr) on ⁵⁸Ni(*n*,el)
- 19 angles (in degree and laboratory system)
- ex0014x.xlst measured data, ex0014x.lst calculated data

EX015: Sequential fitting of data

- Input file ex0015{a,b,c}.inp
- Reaction type: fission \equiv^{239} Pu(n, f)
- 4 energy regions analyzed in four separate SAMMY consecutive runs or in a single run

CAK RIDGE National Laboratory 24

EX016: Fitting 3 data sets sequentially; input covariance matrix

- Input file ex0016{a,b,c}.inp
- Reaction type: transmission on $n+^{56}$ Fe
- Sequential fit of three transmission data sets
- Data covariance information in ex016a.dcv is in input for ex0016a.inp

EX019: Self-shielding and multiple-scattering corrections

- Input file ex0019{a,b}.inp
- Reaction type: neutron capture cross section on $n+^{nat}Ba$
- Multi isotope for BaCO₃ sample (Barium carbonate). No correction (a), only self-shielding (b)

EX019: Self-shielding and multiple-scattering corrections

- Input file ex0019{c,d}.inp
- Reaction type: neutron capture cross section on $n+^{nat}Ba$
- Single/infinite slab (c), Single (d)

EX019: Self-shielding and multiple-scattering corrections

- Input file ex0019{c,e}.inp
- Reaction type: neutron capture cross section on $n+^{nat}Ba$
- Single/infinite slab (c), Double/infinite slab (e)

CAK RIDGE National Laboratory 28

EX020: Integral quantities¹

- Input file ex0020{a,b,c}.inp
- one "real" resonance plus two dummies, non-fissile "experimental" grid is arbitrary, with NXTRA=9
- fissile, using a few resonances from ²³⁵U "experimental" grid is arbitrary, with NXTRA=9
- just like #2 but with expl-data-correlations
- ntg file

EX026: Create ENDF File 2

- Input file ex0026{a,b,c}.inp
- sequential fit of transmission and capture data
- SAMMY.PAR, COV formatted in evaluated nuclear data format (ENDF)
- Check SAMMY. {ENDF, ENDFX}

¹Maxwellian capture, thermal capture, resonance integral,...

EX027: Running SAMMY with ENDF file for input

- Input file ex0027{a,b}.inp
- ex0027a.inp reads ENDF file as input
- ex0027b.inp starts fitting from retrieved resonance parameters
- Reaction type: $^{238}U(n, \gamma)$

EX028: Fitting two datasets with inverse channel option

- Input file ex0028{a,b}.inp
- Reaction type: ¹⁶O(n,tot) and ¹³C(α ,n)¹⁶O
- Inverse channel option

CAK RIDGE National Laboratory 31

EX029: Fitting two datasets with inverse channel option plus normalizations

- Input file ex0028{a,b}.inp
- Reaction type: ¹⁶O(n,tot) and ¹³C(α ,n)¹⁶O
- Inverse channel option plus normalization for each dataset

CAK RIDGE National Laboratory 32