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ABSTRACT

This technical memo serves as lecture material for the R-matrix school 2025 and will be distributed to
the participants. The manuscript discusses the introduction to the R-matrix theory in detail, including its
algorithm to calculate reaction cross sections and derivations.

1. RESOLVED RESONANCES

Resolved resonances are described most conveniently by the R-matrix theory in its standard form in accor-
dance with the article by Lane and Thomas [1], which provides a comprehensive derivation of the equations.
This report defines quantities relevant to the discussion of these lectures using notation similar to that found
in Fröhner’s report [2]. Additional resources on R-matrix theory can be found in both Larson’s SAMMY
manual [3] and in the book by Thompson and Nunes, Nuclear Reactions for Astrophysics [4], from which
these lectures are partly derived.

This report begins with a description of the physical meaning of neutron-induced resolved resonances, as
shown in Figure 1. The set of cross sections (in this particular case, total cross sections shown in black)
feature a rapidly varying resonant behavior which arises from a quasi-bound state of the compound nucleus
system, A+1X, formed by the incident particle (e.g., a neutron) plus a target nucleus, n+AX. The resonances
visible in the total cross sections correspond to the energy levels of the compound nucleus above its neutron
separation energy. As the incident neutron energy (and, therefore, the excitation energy of the compound
nucleus) increases, a greater number of open channels is available, leading to overlap among several excited
states. These concepts can be extended to incident particles other than neutrons such as charged particles,
protons, and α-particles.
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Figure 1. Numerous compound–nucleus resonances of neutron-induced total cross sections are shown
in black. The energy spectrum of the formed compound nucleus, A+1X, corresponds to resonances
above its neutron separation energy. As the energy of the incident particle increases, a greater number
of open channels is available, thus leading to other reaction channels like inelastic scattering.
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Figure 2. Schematic of incident and outgoing channels in the laboratory system. For the interior
region defined within the separation distance R, no assumptions are made about the nature of the
interaction. In the figure, z, a, and iπ refer to the charge, mass number, spin and parity of the incident
particle with velocity v and related angular momentum l, whereas Z, A, and IΠ refer to the target
particle. Primes are used to indicate post-collision quantities.

A particle pair or partition is defined as a pair of (incoming or outgoing) particles, including specific in-
formation relevant to the interaction of two particles such as their masses and charge numbers, spins, and
parities, as schematically shown in Figure 2.

In describing the R-matrix theory formalism, a channel can be conveniently and compactly defined by the
label c = {α, l, s, J}, where

• α represents the (two-body) partition of the compound nucleus system into reaction partners, including
their masses (m and M), charge numbers (z and Z), spins (iπ and IΠ ) with associated parities, and all
other quantum numbers for each of the two particles, as well as the Q-value (in center of mass) or
energy threshold (in laboratory system).

• The angular momenta (in units of ℏ) satisfy the quantum mechanical triangle relations:
#»
J =

#»
l + #»s , i.e. |l − s| ≤ J ≤ l + s ,

#»s =
#»
i +

#»
I , i.e. |I − i| ≤ s ≤ I + i ,
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where, omitting the superscripts for the parity,

l is the orbital angular momentum of the pair with associated parity given by (−1)l,

s represents the channel spin (and associated parity) of the vector sum of the spins of the particle-
pair defined by the quantity α, #»s =

#»
i +

#»
I , and

J is the total angular momentum (and associated parity) of the vector sum of angular momentum
l and channel spin s,

#»
J =

#»
l + #»s .

Only J and the associated parity are conserved for any given interaction. The other quantum numbers may
differ from channel to channel as long as the sum rules for spin and parity are obeyed. The set of all channels
with the same J and π are called a spin group.

The angle-integrated reaction cross section σcc′ , calculated from the incident c and exit channel c′ with a
total angular momentum J, can be written in terms of the scattering matrix UJ

cc′ , as

σcc′ =
π

k2
c

gJ | e+2ıwc δcc′ − Ucc′ |2 δJJ′ , (1)

where the wave number associated with the incident particle pair α ≡ αc in the center of mass of the incident
channel c having incident (moving) particle of mass m and laboratory kinetic energy E is

kc =
1
ℏ

M
(m + M)

√
2mE . (2)

The spin statistical factor for given spins i and I of the two collision partners for the channel c is

gJ =
2J + 1

(2i + 1)(2I + 1)
, (3)

and the quantity wc is the Coulomb phase-shift difference that is zero for non-Coulomb channels. The
scattering matrix U can be written in terms of matrix W as

Ucc′ = ΩcWcc′Ωc′ , (4)

where Ωc is given by
Ωc = eı (wc−φc) , (5)

as defined by wc and the potential scattering phase shifts that are reported in Table 1 for non-Coulomb
interactions. In matrix notation with indices suppressed, the matrix W in Eq. (4) is related to the R matrix
via the relation

W = P
1
2 (I − RL)−1(I − RL∗)P−

1
2 , (6)

where quantities in bold denote non-diagonal matrices. The quantity I represents the identity matrix, and
superscript ∗ indicates a complex conjugate. The quantity L in Eq. (6) is given by

L = (S − B) + ıP , (7)

with P being the penetration factor (penetrability), S the shift factor, and B the arbitrary boundary constant
calculated at the channel radius ac. P and S are functions of energy E depending on the orbital angular
momentum l and the channel radius ac.

Although Eq. (6) is correct, the following equivalent form is used to compute the reaction cross sections as
numerically more stable,
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W = P
1
2 (I − RL)−1(I − RL∗)P−

1
2

= P
1
2 (I − RL)−1(I − RL + 2ıRP)P−

1
2

= P
1
2 [(I − RL)−1(I − RL) + 2ı(I − RL)−1RP]P−

1
2

= P
1
2 P−

1
2 + 2ıP

1
2 (I − RL)−1RPP−

1
2

= I + 2ıP
1
2 (I − RL)−1RP

1
2

= I + 2ıP
1
2 L−1(L−1 − R)−1RP

1
2 ,

(8)

where the non-diagonal matrix X in its index form becomes

Xcc′ = P
1
2
c L−1

c

∑
c′′

[
(L−1 − R)−1

]
cc′′

Rc′′c′P
1
2
c′δJJ′ . (9)

The penetrability Pc → Pl(ρ, η) and shift factors S c → S l(ρ, η) have their most general form in terms of the
regular and irregular Coulomb functions Fl ≡ Fl(ρ, η) and Gl ≡ Gl(ρ, η), respectively, as

Pl =
ρ

F2
l +G2

l

and S l = ρ
ḞF + ĠG
F2

l +G2
l

, (10)

where the overscript dot refers to partial derivatives with respect to ρ. This is related to the center-of-mass
momentum which, in turn, is related to the wave number depending from the laboratory energy of the
incident particle E. For an arbitrary channel c with particle pair α, orbital angular momentum l, and channel
radius ac, ρ has the form

ρ = kαac =
1
ℏ

√
2µα

M
m + M

√
(E − Ξα) ac . (11)

The quantity Ξα is the energy threshold for the particle pair α, and m and M are the masses of the incident
particle and target nucleus, respectively, in the laboratory frame of reference. In Eq. (10), η is the energy-
dependent Sommerfeld parameter that is given by

ηα =
zαZαe2µα

ℏ2kα
, (12)

where µα = mαMα/(mα + Mα) is the reduced mass defined by the masses of the particle-pair α.

In the particular case of neutron-induced reaction, in which the Sommerfeld parameter is zero, appropriate
formulae1 for P, S , and φ are reported in Table 1.

Formulae for a particular cross-section type can be derived by summing over the terms in Eq. (1). For the

1To avoid ambiguity, it should be stated that below the channel threshold, that is, for (E−Ξα) < 0, SAMMY uses the convention
of Lane-Thomas, namely setting Pc = 0 and S c = Re(Lc) = Lc instead of using an analytical continuation of the shift and
penetrability function in the complex plane by computing the expressions in Table 1 as a function of an imaginary ρ for which
iPc(ρ) becomes real-valued but separate from S c(ρ).
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Table 1. Hard-sphere penetrability (penetration factor) P, level shift factor S, and
potential-scattering phase shift φ for orbital angular momentum l, wave number
k, and channel radius ac, with ρ = kac

l Pl S l φl

0 ρ 0 ρ

1 ρ3/(1 + ρ2) −1/(1 + ρ2) ρ − tan−1 ρ

2 ρ5/(9 + 3ρ2 + ρ4) −(18 + 3ρ2)/(9 + 3ρ2 + ρ4) ρ − tan−1
[
3ρ/(3 − ρ2)

]
...

...
...

...

l ρ2Pl−1

(1−S l−1)2+P2
l−1

ρ2(l−S l−1)
(1−S l−1)2+P2

l−1
− l φl−1 − tan−1 (Pl−1/(l − S l−1))†

† The iterative formula for φl could also be defined by Bl = (Bl−1+Xl)/(1−Bl−1Xl), where Bl = tan(ρ−φl)
and Xl = Pl−1/(l − S l−1).

total cross section, the sum over all possible exit channels and all spin groups gives

σtot =
∑

incident
channels

c

∑
all

channels
c′

∑
J

π

k2
c

gJ |δcc′ − Ucc′ |2

=
π

k2
c

∑
J

gJ

∑
incident
channels

c

∑
all

channels
c′

(
δcc′ − Ucc′δcc′ − U∗cc′δcc′ + |Ucc′ |2

)

=
2π
k2

c

∑
J

gJ

∑
incident
channels

c

[
1 − Re{Ucc}

]
.

(13)

For neutral or non-charged incident particles, the elastic (or scattering) cross section c = c′ is given by

σela =
π

k2
c

∑
J

gJ

∑
c=incident

channel

[
1 − 2 Re{Ucc} +

∑
c′=incident

channel

|Ucc′ |2
]
. (14)

Similarly, the cross section for any non-elastic reaction can be written as

σrea =
π

k2
c

∑
J

gJ

∑
c=incident

channel

∑
c′=reaction

channel

|Ucc′ |2. (15)

In particular, the capture cross section could be written as the difference between the total and all other cross
sections,

σcap =
π

k2
c

∑
J

gJ

∑
c=incident

channel

(
1 −

∑
c′=all channels
except capture

|Ucc′ |2
)
. (16)

1.1 R-MATRIX AND A-MATRIX EQUATIONS

The R matrix introduced in Eq. (6) is defined by the energy-dependent R-matrix function in its general form
as

Rcc′ =
∑
λ

γλcγλc′

Eλ − E
δJ,J′ , (17)
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where Eλ represents the energy for the resonance level λ with reduced width-amplitude γ related to the
partial width Γ by

Γλc = 2Pcγ
2
λc . (18)

Note that in Eq. (17), the energies and widths are given in laboratory frame of reference. The summation in
Eq. (17) contains an infinite number of levels. All channels, including the “gamma channel” for which one
of the particles is a photon, are represented by the channel indices.

The scattering matrix can be parameterized not only by the R matrix (expressed in terms of channel–channel
interactions), but also by the level matrix A that is expressed in terms of level–level interactions:

A−1
µλ = (Eλ − E) δµλ −

∑
c

γµcLcγλc. (19)

To see the relationship of the A matrix to the R matrix, the first step is to multiply both sides of Eq. (19) by
A and sum over the level index λ,

∑
λ

A−1
µλAλν =

∑
λ

(Eλ − E) δµλAλν −
∑

c

γµcLcγλcAλν,

⇓
δµν =

(
Eµ − E

)
Aµν −

∑
c

γµcLc

∑
λ

γλcAλν .

(20)

Dividing by (Eµ −E), multiplying on the left by γµc′ and on the right by γνc′′ , and summing over µ, the form
of the equation becomes

∑
µ

γµc′
(
Eµ − E

)−1
δµνγνc′′ =

∑
µ

γµc′
(
Eµ − E

)−1 (
Eµ − E

)
Aµνγνc′′

−
∑
µ

γµc′
(
Eµ − E

)−1 ∑
c

γµcLc

∑
λ

γλcAλνγνc′′ ,
(21)

which can be reduced to

γνc′ (Eν − E)−1 γνc′′ =
∑
µ

γµc′Aµνγνc′′

−
∑

c

∑
µ

γµc′
(
Eµ − E

)−1
γµc

 Lc

∑
λ

γλcAλνγνc′′ .

(22)

Summing over ν puts this into the form

∑
ν

γνc′ (Eν − E)−1 γνc′′

 =∑
µν

γµc′Aµνγνc′′

−
∑

c

∑
µ

γµc′
(
Eµ − E

)−1
γµc

 Lc

∑
λν

γλcAλνγνc′′ ,

(23)

in which the quantities in square brackets can be replaced with the R matrix, giving

6



Rc′c′′ =
∑
µν

γµc′Aµνγνc′′ −
∑

c

Rc′cLc

∑
λν

γλcAλνγνc′′ ,

=
∑

c

[δc′c − Rc′cLc]
∑
λν

γλcAλνγνc′′ .
(24)

Solving for the summation, this equation can be rewritten as

[(I − RL)−1R]cc′′ =
∑
λν

γλcAλνγνc′′ . (25)

Comparing Eq. (25) to Eq. (8) gives, in matrix notation,

W = I + 2ıP
1
2γ⊺AγP

1
2 . (26)

These equations are exact because no approximations have been made.

1.2 REICH-MOORE APPROXIMATION

One approximation commonly made for RRR evaluation of nuclei with a large number of capture channels
is to “eliminate” them by treating them in aggregate, since individual capture channel cross sections are
ordinarily not measured. This is the Reich–Moore (RM) approximation in which the total capture cross sec-
tion is parameterized by adding an imaginary (total) capture width to the resonance energy appearing inside
the R-matrix, and the capture cross section is calculated as a deviation from unitarity of the approximate
R-matrix. The approximation is most clearly explained via the definition A-matrix Eq. (19); neglecting the
off-diagonal for the photon channels, this equation can be approximated as

A−1
µλ ≈ (Eλ − E) δµλ −

[ ∑
c=photon
channels

γµγLγγλγ
]
δµλ −

∑
c=particle
channels

γµcLcγλc . (27)

The off-diagonal elements of the matrix in square brackets have been assumed to be negligible relative to the
diagonal and approximated by zero, due to cancellations among the terms summed over in the expression
for off-diagonal elements. The accuracy of this approximation increases with increasing number of cap-
ture channels, increasing randomness of signs of capture partial width amplitudes (PWAs), and decreasing
correlations among the capture PWAs between different levels2. For gamma channels c ∈ γ, the quantity
L = S − B + ıP reduces to Lγ = S γ − Bγ + ı, and Eq. (27) becomes

A−1
µλ ≈

(
Eλ + ∆λγ − E − ıΓλγ/2

)
δµλ −

∑
c=particle
channels

γµcLcγλc , (28)

where the level shift for the photon channel ∆λγ is usually absorbed in the resonance energy Eλ. The bar
over Γλγ is used to indicate that the RM width is the sum of all possible gamma transitions within the photon
channel.

In this form, the expression for the matrix A is analogous to the exact expression in Eq. (19) with two
modifications: the additional imaginary term is added to the energy difference, and the sum over the channels
includes only the particle channels (non-eliminated channels). It is therefore possible to immediately write
the R-matrix formula for the eliminated-channel approximation as

2Fulfillment of these conditions is known as random phase hypothesis.
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Rcc′ =
∑
λ

γλcγλc′

Eλ − E − ıΓλγ/2
δJJ′ , (29)

where the channel indices c and c′ refer only to particle channels, not to the gamma channels. This R matrix
formula is the RM approximation and is the form used in the SAMMY code.

1.3 THE PRACTICALLY IMPORTANT A-MATRIX APPROXIMATIONS

The practically important approximations of the R-matrix theory can be easily described in the inverse of
the level matrix A in the following convenient manner. Recalling the quantity Lc = (Bc − S c) + ıPc, one has

• Wigner–Eisenbud representation (exact)

With boundary condition Bc ∈ R and constant, e.g. Bc = −lc :

(A−1)λµ = (Eλ − E) δλµ −
∑

c

γλcLcγµc .

The eigenvalues Eλ and decay amplitudes γλc are real and constant. Unitary of the scattering matrix
is implicitly preserved.

• Reich–Moore approximation (RM)

Off-diagonal contributions of the photon channels c ∈ γ are neglected:

(A−1)λµ = (Eλ + ∆λγ − E − ıΓλγ/2) δλµ −
∑

c

γλcLcγµc .

The eigenvalues Eλ and decay amplitudes γλc are real and constant, as well as the gamma radiation
width: Γγλ =

∑
c∈γ Γλc. The scattering matrix is not unitary, but the unitary on the scattering matrix is

assumed in calculating the capture cross section, as shown for neutral particle in Eq. (16).

• Kapur–Peierls representation (exact)

With the complex boundary Bc = S c + ıP, one has Lc = 0 :

(A−1)λµ = (Eλ − E) δλµ .

The eigenvalues Eλ and decay amplitudes γλc are complex, with implicit energy dependence. This
boundary condition removes the need for matrix inversion because (I − RL) = I, but this leads to
complex, energy-dependent resonance parameters.

• Single-level Breit–Wigner approximation (SLBW)

Only one level retained λ = k, and all others neglected:

A−1 = (Ek − E) −
∑

c

Lcγ
2
kc = Ek + ∆k − E − ıΓk .

Level shift ∆k and total with Γk =
∑

c Γc real with explicit energy dependencies.

• Multi-level Breit–Wigner approximation (MLBW)

Off-diagonal elements of the inverse of the level matrix A−1 neglected

(A−1)λµ = (Eλ − E −
∑

c

γ2
λcLc) δλµ = (Eλ + ∆λ − E − ıΓλ/2) δλµ .

Level shift ∆k and total with Γk =
∑

c Γc real with explicit energy dependencies.

8



• Adler–Adler approximation (AA)

The quantity Lc is calculated at the corresponding resonance energy Eλ (Eµ), neglecting its energy
dependence:

(A−1)λµ = (Eλ − E) δλµ −
∑

c

γλc

√
Lc(Eλ)Lc(Eµ) γµc .

1.4 DERIVATION OF SCATTERING THEORY EQUATIONS

In previous sections, the scattering matrix U for the incident particle energy Elab was written in terms of
the R matrix via the matrices W, Ω, L, and P, depending on a set of resonance parameters. However, the
relation between U and R matrices was presented without discussing the form of the R-matrix function of
Eq. (17) and neglecting the role of the set of resonance parameters in that derivation. In this section, a brief
derivation of the R-matrix function is discussed.

It is first assumed that it is possible to define a region above a distance R (in radial coordinates) if the nuclear
forces are negligible. The distance a (usually in units of Fermi or fm) allows for definition of the radial wave
functions u ≡ u(R) in the external (R > a) and internal (R < a) region, matching at the distance R = a and
forming the total wave function ψ ≡ ψ(R, cos(θ)) at any radial and angular distance and at general energy E
defined in the center of mass of two nuclei.

1.4.1 Schrödinger Equation

Limiting the discussion to the case of elastic scattering of spinless particles3, the Hamiltonian H with a
complex potential having a real and an imaginary component, V and W, respectively, is

H ψ = (T + V + ıW)ψ = E ψ , (30)

where, following the partial expansion of the wave function ψwith the Legendre Polynomial Pl ≡ Pl(cos (θ)))
for each partial wave l ,

ψ(R, cos (θ)) =
∞∑

l=0

ul(R)
R

Pl(cos (θ)) . (31)

The kinetic operator T in radial coordinates is

T = − ℏ
2

2µ

[
d2

dR2 −
l(l + 1)

R2

]
, (32)

with reduced mass µ, and the conditions on the wave function are that |ψ|2 is everywhere finite and that
ul(R) = 0 for R = 0.

1.4.2 Solutions in the External Region

In the external region R > a, the nuclear forces are zero (V = W = 0), reducing the Hamiltonian to

d2ul

dR2 +

[
k2 − l(l + 1)

R2

]
ul = 0 , (33)

with k2 = 2µE/ℏ2, and therefore having solutions of the following form:

ul(R) = Il(R) − UlOl(R). (34)
3For a more general discussion see Section VII.1 of [1]
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Il ≡ Il(kR, η) and Ol ≡ Ol(kR, η) represent an incoming and outgoing free wave, respectively, with η being
the Sommerfeld Coulomb parameter. Ul is the collision function or S function that describes the effects of
the nuclear interaction, giving both the attenuation and the phase shift of the outgoing wave as

|Ul|2 = 1 for W = 0,

|Ul|2 < 1 for W , 0,
(35)

and the goal is to determine an appropriate analytic form for Ul.

1.4.3 Orthogonal Eigenvectors in Interior Region

For the interior region R < a , one starts to define a set of eigenfunctions wλl ≡ wλl(R) and eigenvalues Eλ

for a real potential (V ∈ R and W = 0), satisfying

d2wλl

dR2 +

[
k2
λ −

2µ
ℏ2 V − l(l + 1)

R2

]
wλl = 0 , (36)

with eigenvalues (in center of mass reference)

Eλ =
ℏ2k2

λ

2µ
. (37)

To ensure that the set of eigenfunctions of Eq. (36) are orthogonal, wλl must satisfy the boundary condition
wλl(R) = 0 for R = 0, together with its logarithmic derivative with respect to R calculated at the distance
R = a fixed at some constant value Bl as

a
w′λl(a)
wλl(a)

= Bl. (38)

Note that wλl(R) ∈ R if the boundary parameter Bl is chosen to be real. The set of eigenfunctions defined
with the two conditions above is orthogonal, and this can be demonstrated by∫ R=a

R=0

(
d2wλl

dR2 wνl − wλl
d2wνl

dR2

)
dR =

∫ R=a

R=0

d
dR

(
dwλl

dR
wνl − wλl

dwνl

dR

)
dR

=

[
dwλl

dR
wνl − wλl

dwνl

dR

]R=a

R=0

=
dwλl

dR

∣∣∣∣
R=a

wνl(a) − wλl(a)
dwνl

dR

∣∣∣∣
R=a

=
Bl

a

(
wλl(a)wνl(a) − wλl(a)wνl(a)

)
= 0 ,

(39)

in which the conditions at the origin on each eigenfunction, wλl(R) = 0 for R = 0, and Eq. (38), have in fact
been invoked. The logarithmic condition on the eigenfunction is the additional condition or R-matrix trick
used to ensure the wave function orthogonality over a finite range [0, a]. Similarly, the integral in Eq. (39)
can be evaluated using Eq. (36), giving∫ R=a

R=0

(
d2wλl

dR2 wνl − wλl
d2wνl

dR2

)
dR =

∫ R=a

R=0

[(
− k2

λ −
2µV
ℏ2

)
wλlwνl − wλl

(
− k2

ν −
2µV
ℏ2

)
wνl

]
dR

=

∫ R=a

R=0

(
− k2

λwλlwνl + k2
νwλlwνl

)
dR

= −(k2
λ − k2

ν)
∫ R=a

R=0
wλl wνl dR .

(40)
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Equating Eq. (39) to Eq. (40) gives

(k2
λ − k2

ν)
∫ R=a

R=0
wλl wνl dR = 0 . (41)

For λ , µ, assuming no degenerate states, it therefore follows that∫ R=a

R=0
wλl wνl dR = 0 if λ , ν . (42)

The orthogonality of the eigenvectors is therefore established. It is assumed that these wave functions are
normalized such that ∫ R=a

R=0
wλl wνl dR = δλν . (43)

1.4.4 Matching at the Surface

The next step is to define the internal wave function for the Hamiltonian, also including the complex com-
ponent W of the potential. As basis states, the strategy uses the eigenfunctions found for the real component
V and expanded as

ul(R) =
∑
λ

cλl wλl(R) for R ≤ a , (44)

with coefficients (to be determined) given by

cλl =

∫ R=a

R=0
ul wλl dR (45)

and found by multiplying Eq. (44) by uλl(R), integrating over the interval [0, a], and applying the orthogo-
nality relation of Eq. (43).

Starting by considering the integral∫ R=a

R=0

(
u′′l wλl − ul w′′λl

)
dR =

∫ R=a

R=0

(
d2ul

dR2 wλl − ul
d2wλl

dR2

)
dR , (46)

this can be expanded by the use of Eqs. (30) and (36) to give∫ R=a

R=0

(
d2ul

dR2 wλl − ul
d2wλl

dR2

)
dR

=

∫ R=a

R=0

{[
k2 − 2µ

ℏ2 (V + ıW) − l(l + 1)
R2

]
ul wλl + ul

[
k2
λ −

2µ
ℏ2 V − l(l + 1)

R2

]
wλl

}
dR

= (k2
λ − k2)

∫ R=a

R=0
ul wλl dR +

2µ
ℏ

∫ R=a

R=0
W ul wλl dR.

(47)

Defining Wλl as

Wλl =

∫ R=a
R=0 W ul wλl dR∫ R=a

R=0 ul wλl dR
(48)

allows Eq. (47) to be rewritten in the form∫ R=a

R=0

(
d2ul

dR2 wλl − ul
d2wλl

dR2

)
dR =

(
k2
λ − k2 + ı

2µ
ℏ2 Wλl

) ∫ R=a

R=0
ul wλl dR. (49)
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Integrating the left-hand side of this equation gives∫ R=a

R=0

(
d2ul

dR2 wλl − ul
d2wλl

dR2

)
dR =

[
dul

dR
wλl − ul

d wλl

dR

]R=a

R=0
=

[
dul

dR
wλl − ul

dwλl

dR

]
R=a

=

[
dul

dR
wλl − ul

Bl

a
wλl

]
R=a
=

[
a

dul

dR
− ul Bl

]
R=a

wλl(a)
a

,

(50)

in the boundary condition of Eq. (38) which has again been used. Integrating the right-hand side of Eq. (49)
by applying Eq. (45) gives(

k2
λ − k2 + ı

2µ
ℏ2 Wλl

) ∫ R=a

R=0
ul wλl dR =

(
k2
λ − k2 + ı

2µ
ℏ2 Wλl

)
cλl . (51)

Equating Eqs. (50) and (51), therefore, gives[
a

dul

dR
− ul Bl

]
R=a

wλl

a
=

(
k2
λ − k2 + ı

2µ
ℏ2 Wλl

)
cλl =

2µ
ℏ2 (Eλ − E + ıWλl) cλl , (52)

or, solving for the coefficients cλl,

cλl =
ℏ2wλl(a)

2µa
(
Eλ − E − ıWλl

) [adul

dR
− ulBl

]
R=a

. (53)

Inserting this into Eq. (44) gives

ul(r) =
∑
λ

wλl(r)
ℏ2wλl(a)

2µa
(
Eλ − E − ıWλl

) [adul

dr
− ulBl

]
R=a

, (54)

which, when evaluated at R = a, becomes

ul(a) =
∑
λ

ℏ2w2
λl(a)

2µa
(
Eλ − E − ıWλl

) [adul

dr
− ul Bl

]
R=a

. (55)

Rearranging, this becomes

ul(a) =
[
a

dul

dR
− ul Bl

]
R=a

∑
λ

ℏ2w2
λl(a)/2µa(

Eλ − E − ıWλl
)

=
[
a u′l − ul Bl

]
R=a

∑
λ

γ2
λl(

Eλ − E − ıΓλl/2
) , (56)

in which the decay amplitude γλl is defined as

γλl ≡

√
ℏ2w2

λl(a)

2µa
(57)

and the absorption width Γλl is defined as
Γλl ≡ 2Wλl . (58)
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If the R-function (in the center of mass) is then defined as

Rl =
∑
λ

γ2
λl

Eλ − E − ıΓλl/2
, (59)

then Eq. (56) can be written in the form

ul =
[
a u′l(a) − ul(a) Bl

]
Rl , (60)

in which everything is evaluated at the matching radius a. Note that the form of Eq. (59) (which is in the
CoM frame) is the same as if it were in the laboratory frame of reference. This is because of canceling terms
in the numerator and denominator of the R-matrix, as in

E ≡ E(lab) =
M

m + M
E(CoM),

Eλ ≡ E(lab)
λ =

M
m + M

E(CoM)
λ ,

γ2
λ,l ≡ (γ(lab)

λ,l )2 =
M

m + M
(γ(CoM)
λ,l )2, and

Γγ,l ≡ Γ(lab)
γ,l =

M
m + M

Γ
(CoM)
γ,l .

(61)

Because of this relationship, Eq. (59) can be used for center of mass or laboratory frame parameters. Con-
ventional SAMMY parameterization is to use the laboratory frame.

1.4.5 Spinless particle Scattering Matrix in Terms of R-matrix

Equation (60) for spinless4 particles can be converted into the usual R-matrix formulae by inserting Eq. (34),

ul = Il − Ul Ol , (62)

yielding
Il − Ul Ol =

[
a
(
I′l − Ul O′l

)
− Bl

(
Il − Ul Ol

)]
Rl , (63)

in which the primes are related to the partial derivatives with respect to the radial coordinate R, and all
quantities are evaluated at the matching radius a. Solving Eq. (63) for U gives

Ul
[
− Ol + Rl

(
a O′l − Bl Ol

)]
= Il − Rl

(
a I′l − Bl Il

)
, (64)

or

Ul =
Il − Rl

(
a I′l − Bl Il

)
−Ol + Rl

(
a O′l − Bl Ol

) = Il

Ol

1 − Rl
(
a

I′l
Il
− Bl

)
1 − Rl

(
a

O′l
Ol
− Bl

) . (65)

The logarithmic derivative Ll is defined as

Ll ≡ a
O′l
Ol
=

[
R
∂ ln Ol

∂R

]
R=a
≡ S l + ıPl . (66)

For spinless particles, the complex conjugate relation I∗l = Ol can be used, so that

L∗l ≡ a
I′l
Il
=

[
R
∂ ln Il

∂R

]
R=a
≡ S l − ıPl, (67)

4For a more general derivation see Section VII.1 of [1]
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and the ratio
Il

Ol
=

O∗l
Ol
=
|Ol| e−iφl

|Ol| e+ıφl
= e−2ıφl . (68)

Therefore, Eq. (64) becomes

Ul = e−2ıφl
1 − Rl

(
L∗l − Bl

)
1 − Rl

(
Ll − Bl

) , (69)

which is the usual form for the scattering matrix in terms of the R-matrix in this simple case.
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